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Abstract

The project undertook theoretical research in quantum algorithms, complexity of
quantum computation, quantum primitives, and quantum communication protocols.
In the area of complexity, it compared quantum computation models with classical
ones, finding counting complexity classes between BQP and AWPP that are likely
different from both. It investigated small-depth quantum circuits (both with and with-
out unbounded fan-in gates such as quantum AND) and found lower and upper bounds
on their power and complexity. In the area of new quantum primitives, the project
found Hamiltonians for the quantum fan-out gate, based on spin-exchange interactions.
In the area of quantum algorithms, the project showed that there are efficient quantum
algorithms for various group theoretic problems, for example, group intersection and
double coset membership for certain classes of solvable groups. It also found a network
of efficient quantum reducibilities between these and other group-theoretic problems.
These are the project’s successes.

The project was unsuccessful in some endeavors. It has so far failed to find natural
problems in these intermediate classes between BQP and AWPP, or to isolate the
more robust classes among these. It did not find further evidence that BQP does not
contain NP. There was no significant progress on quantum communication protocols.
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2.7 New Quantum Communication Protocols . . . . . . . . . . . . . . . . . . . . 9
2.8 Quantum Random Walks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
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Thick lines indicate nontrivial reductions we found in [FZ05] . . . . . . . . . 9

1 Statement of Problems Studied

The project investigated the following questions:

1. Are there natural, robust complexity classes between BQP and AWPP
that are unlikely to be equal to either? AWPP is a counting class defined by
Li [Li93, FFKL03] and shown to include BQP by Fortnow & Rogers [FR99]. It the
smallest well-studied non-quantum class known to contain BQP.

2. Is there more convincing evidence that NP 6⊆ BQP? This noninclusion would
imply that NP-complete problems are not tractable even with a quantum computer.

3. What is the power of families of quantum circuits of small depth, especially
sub-logarithmic or constant depth? This is an open-ended question whose answer
depends on several independent variables, for example, which types of gates are allowed,
how much error probability is allowed, and how may ancilla qubits are allowed.

4. How easily can small-depth quantum circuits be simulated, either classi-
cally, or by more restricted quantum circuits? This question is closely related
to the previous one.

5. Are there quantum operations that can act as new primitives that are both
algorithmically powerful and potentially physically feasible? New quantum
computational primitives may help to span the gap between theory and implementation
of quantum computation.

6. Can new quantum algorithms be found for problems believed to be classi-
cally intractable? Good candidates for such problems include special cases of the
well-studied Hidden Subgroup problem for nonabelian groups.

7. What new communication protocols can be based on quantum information
principles?

The project was largely successful with items 3, 4, 5, and 6. It was somewhat successful with
item 1, and largely unsuccessful with items 2 and 7. The project also had a result unrelated
to the questions above (see Section 2.8).

2



2 Summary of Results

After some preliminary definitions, the project’s results related to the above questions will
be described in the same order as they are listed.

We let N = {0, 1, 2, . . .} and fix Σ = {0, 1} to be the standard binary alphabet. For
n ∈ N, we define Σn to be the set of all binary strings (strings over Σ) of length n. We let
Σ∗ =

⋃

n∈N
Σn. We identify Σ∗ with N via the usual binary representation. For x, y ∈ Σ∗ we

let |x| denote the length of x, and we write x ⊑ y to mean that x is a prefix of y. We use
standard concepts and notation from computational complexity theory (see Papadimitriou
[Pap94], for example).

2.1 Classes Between BQP and AWPP

We have defined a number of counting complexity classes between BQP and AWPP
[Fen03a]. These classes are defined using distribution-valued functions similar to those used
by Aharonov, Kitaev, & Nisan [AKN98] in defining the quantum function class FQP.

Definition 2.1. A function f is a distribution-valued function (or DVF) if there is a
polynomial p such that, for all n ∈ N and x ∈ Σn, p(n) ≥ 1 and f(x) is a probability
distribution on Σp(n). For y ∈ Σp(n), we write f(y | x) for the probability assigned to y by
f(x). For every 0 ≤ m < p(n), f(x) induces a natural probability distribution on Σm which
assigns to each string z ∈ Σm the probability

f(z | x) =
∑

y∈Σp(n):z⊑y

f(y | x).

For example, the distributions of output probabilities of a family of polynomial-size quan-
tum circuits is a DVF of the inputs to the circuits. Such DVFs form the class FQP. We
can define language classes based on FQP as follows:

Definition 2.2. For any DVF f , we define the language of f , written Lf , to be such that,
for all x ∈ Σ∗,

x ∈ Lf ⇐⇒ f(0 | x) > 1/2.

We say that f has bounded error if for all x ∈ Σ∗ and r ∈ N,

f(0 | 〈x, 0r〉) ≤ 2−r or f(0 | 〈x, 0r〉) ≥ 1 − 2−r.

We say that f is exact if f(0 | x) ∈ {0, 1} for all x ∈ Σ∗.

Definition 2.3. Let F be a class of distribution-valued functions. We define the bounded
error class of F as

B · F = {Lf : f ∈ F has bounded error}.
We define the zero error class of F as

E · F = {Lf : f ∈ F is exact}.

3



We get BQP = B · FQP and EQP = E · FQP. We get bigger subclasses of AWPP
by considering broader classes of DVFs than FQP. In particular, we define DVFs based
on exponential size matrices whose entries are GapP functions of the input (for information
about GapP, see [FFK94] for example).

Definition 2.4. A DVF f is in the class FM if there is a polynomial p ≥ 1, a function
g ∈ GapP, and a ptime computable function h : Σ∗ → N such that for all n ∈ N, all x ∈ Σn,
and all y ∈ Σp(n) we have

f(y | x) =

(

g(y, x)

h(0|x|)

)2

.

It is easy to show that B · FM = AWPP. This definition generalizes FQP by allowing
the probability amplitude of an output state |y〉 given an input state |x〉 to be of the form
g(y, x)/h(0|x|). Let M be the 2p(n) × 2p(n) matrix with (y, x) entry being g(y, x)/h(0|x|). By
restricting the form of M , we can obtain classes between BQP and AWPP. For example,
let FUM be the class of DVFs in FM for which the matrix M is unitary (or orthogonal, since
it is a real matrix), and let BUM = B · FUM. Then we have BQP ⊆ BUM ⊆ AWPP,
the first inclusion following from the fact that any quantum computation can be rendered
by a circuit with real probability amplitudes, and it is known that these amplitudes can
be of the form g(y, x)/h(0|x|) [FR99]. Another possibility is to restrict the matrix M to be
antisymmetric, letting the probability amplitudes be entries of the matrix N = exp(M). If
we define FAM to be the corresponding class of DVFs and let BAM = B · FAM, then it
can be shown that BQP ⊆ BAM ⊆ BUM ⊆ AWPP.

We suspect that all these containments are proper, although we have no evidence as yet to
suggest that they are. We also know of no interesting, natural problems in the intermediate
classes BUM of BAM that are not known to be in previously studied subclasses. These
are topics for future research.

These results are still in draft form. Technical difficulties with the notation and exposition
have delayed submitting this paper to a journal.

Our investigation was also helped by a separate technical improvement in the charac-
terization of AWPP. We simplified the definition of AWPP using a GapP amplification
technique, showing that AWPP is a very robust class [Fen03c].

2.2 Noninclusion of NP in BQP

We obtained no noteworthy results related to this question, or the more general question of
where BQP sits with regard to the polynomial hierarchy. This question is widely acknowl-
edged to be difficult.

2.3 Power of Small-Depth Quantum Circuits

We have a lower bound in this area. We have shown that the quantum fanout operator
cannot be computed (even approximately) by sub-logarithmic depth quantum circuits with
unbounded fanin AND gates (generalized Toffoli gates) and a sublinear number of ancilla
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qubits [FFG+06]. The same result holds for the quantum parity operator or any quantum
Modk operator by results Green et al. [GHMP02].

The parity operator on n qubits takes the computational basis state |x1, . . . , xn−1, xn〉
to |x1, . . . , xn−1, x1 ⊕ · · · ⊕ xn〉, where xn is the target and the rest are control qubits. The
n-qubit fan-out operator takes |x1, x2, . . . , xn〉 to |x1, x1 ⊕ x2, . . . , x1 ⊕ xn〉, where x1 is the
control and the rest are target qubits. The n-qubit AND gate (generalized Toffoli gate) takes
|x1, . . . , xn−1, xn〉 to |x1, . . . , xn−1, (x1 ∧ · · · ∧ xn−1) ⊕ xn〉. Let φ = (1+

√
5)/2 be the golden

ratio. In [FFG+06] we prove

Theorem 2.5. Let C be an n-input quantum circuit of depth d consisting of single-qubit
gates and unbounded fan-in quantum AND gates, with a many ancilla qubits.

• If C cleanly computes the parity operator, then d ≥ logφ(n/(a+1))−1
.
= 1.44 log2(n/(a+

1)) − 1.

• If a = 0 and C approximates the parity operator to within 1/
√

2 in the operator norm,
then d ≥ logφ n − 1

.
= 1.44 log2 n − 1.

This theorem suggests that the class QAC0 (the quantum analog of the circuit class
AC0 of constant-depth polynomial-size Boolean circuits with unbounded fan-in AND gates)
is properly contained in the class QAC0

wf = QACC0 (wf means “with fan-out gates”;

QACC0 is the quantum analog of the circuit class ACC0 of constant-depth polynomial-size
Boolean circuits with unbounded fan-in AND and Modk gates). This is certainly the case if
the number of ancilla qubits is restricted.

It is straightforward to compute parity in depth 2 log2 n + 1 with only controlled NOT
gates and no ancilla qubits. We conjecture that this is optimal regardless of how many
ancilla qubit are allowed. Thus Theorem 2.5 leaves much room for improvement.

2.4 Simulating Small-Depth Quantum Circuits

We obtained both lower and upper bounds on the difficulty of simulating constant-depth
quantum circuits with bounded fan-in gates [FGHZ05]. A family of quantum circuits is in
QNC0 if the circuits in the family have polynomial size and depth O(1), and their gates are
drawn from a fixed finite set. This is the analog of families of constant-depth classical Boolean
circuits with bounded fan-in gates. Using QNC0 circuits, we can define language classes
such as NQNC0, the class of languages recognized by QNC0 circuits where the criterion
for acceptance is that the all-zero output state |00 · · ·0〉 occurs with positive probability.
NQNC0 is the constant-depth analog of the class NQP defined in [ADH97], which is equal
to the counting class C 6=P [FGHP99, YY99]. In [FGHZ05] we improved on a construction
of Terhal & DiVincenzo [TD04] to show

Theorem 2.6. NQNC0 = NQP = C 6=P.

Thus deciding zero versus nonzero output probabilities for a given state is just as hard
for constant-depth quantum circuits as it is for arbitrary quantum circuits, and the latter
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task is known to be hard for the polynomial hierarchy (see [FGHP99]). This is true even for
circuits of depth just three (which is optimal [TD04]).

In the other direction, we also showed that acceptance probabilities for QNC0 circuits
can be computed approximately in (classical) polynomial time [FGHZ05]. This implies that
certain bounded-error language classes defined from QNC0 circuits are contained in P. For
0 < ǫ ≤ δ ≤ 1, we define BQNC0

ǫ,δ to be the class of languages recognized by polynomial-
time uniform families of constant-depth, polynomial-size quantum circuits with acceptance
probability either < ǫ (for rejection) or ≥ δ (for acceptance). The values ǫ and δ may be
functions of the circuit. (The acceptance probability of a circuit is the probability of observing
the output qubits to be all zero.) In [FGHZ05] we show that

Theorem 2.7. If 1 − ǫ ≥ 4d(1 − δ) where d is the circuit depth, then BQNC0 ⊆ P.

This upper-bound result can stand improvement in two ways: (i) decreasing the gap
between 1− ǫ and 1− δ to a factor significantly less than 4d, and (ii) loosening the definition
of QNC0 by allowing nontrivial classical postprocessing before deciding acceptance.

2.5 New Quantum Primitives

In two separate papers we considered spin-exchange interactions between n spin-1/2 particles,
where the pairwise couplings are all equal. In the first paper [Fen03b], we considered the
Hamiltonian Hz = J2

z , where Jz is the operator giving the total spin in the z-direction. In
the second paper [FZ04], we considered the more isotropic Heisenberg interaction, with a
parameterized Hamiltonian of

Hα,β = −J2 + αJz + βJ2
z ,

where α and β are any real constants with β 6= 1, and J2 = J2
x + J2

y + J2
z is the squared

magnitude of the total spin. This investigation was prompted by questions posed by Chuang
[Chu03, Chu04].

In each of these papers, we showed that, for any n > 0, the spin-exchange interaction can
be used to exactly implement an n-qubit parity gate, which is equivalent in constant depth
to an n-qubit fanout gate. In the earlier paper, each qubit is a single spin-1/2 particle, with
no encoding needed. In the later paper, we need to encode each qubit into a pair of spin-1/2
particles.

We generalized our basic results by showing that any Hamiltonian (acting on suitably
encoded logical qubits), whose eigenvalues depend quadratically on the Hamming weight of
the logical qubit values, can be used to implement generalized Modq gates for any q ≥ 2.

The circuit for parity from the second paper is shown in Figure 1. Here, the gate E,
depicted in Figure 2, encodes a qubit into a pair of particles, sending |0〉 to |00〉 and sending
|1〉 to the singlet state (|10〉−|01〉)/

√
2. Since E = E†, it is also used for decoding at the end.

The gate H is the one-qubit Hadamard operator. The U operator represents the Heisenberg
interaction being turned on for a period of time t = π/(2|β − 1|); that is,

U = e−itHα,β .
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Figure 1: Circuit to implement parity with Heisenberg interactions.

:=E

H

Figure 2: A two-qubit encoder.

Finally, V is a conditional phase shift gate:

V =

[

1 0
0 e−isπ(2r+γ−1)/2

]

,

where r is the number of control qubits of the parity gate on the left-hand side of Figure 1,
γ = (α − 1)/(β − 1), and s = 1 if β > 1 and s = −1 otherwise. More details are in [FZ04].

One hopes that parity and fan-out operators (which are surprisingly powerful for constant-
depth quantum computation [HŠ03]) can be implemented on a modest scale using this inter-
action. Ion traps may allow for this, in that certain processes may be able to communicate
spin couplings evenly across the particles.

The circuit of Figure 1 seems to be inherently fault-intolerant, which presents an obstacle
for larger-scale implementations. Also, we have assumed throughout that the coupling coef-
ficients are all equal. Whether this assumption is realistic remains to be seen. It is certainly
more likely in the short run that in feasible laboratory setups, the coefficients will not be
equal, but can still satisfy certain symmetries.

2.6 New Quantum Algorithms

We have shown that there are efficient quantum algorithms for certain problems on groups,
namely, Group Intersection and Double Coset Membership (defined below), by
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reducing them to previously studied problems for which efficient quantum algorithms are
known [FZ05].

Our work applies to the black-box group model of Babai & Szemerédi [BS84]. In this
model, a family of groups B1, B2, B3, . . . is assumed, where the elements of each Bn are
represented by strings of length polynomial in n, and where the group operation and inverse
map on Bn is given by an oracle. The Bn are sometimes called “ambient groups.” Group-
theoretic algorithms in this model may take as inputs elements and subgroups of Bn and use
the oracle to compute products and inverses. A subgroup H ≤ Bn is always represented for
computational purposes by a list of generators for H of length O(log n). Black-box group
algorithms are general in the sense that any concrete implementation of the group oracle
(e.g., matrix groups or permutation groups) immediately yields concrete implementations of
the algorithms.

The model may or may not assume that group elements are encoded by unique strings.
If not, then an equality-testing oracle is also assumed (testing whether two strings represent
the same group element). Our work relates to the unique encoding model, although we need
results from the non-unique model in order to handle factor groups.

The following definitions of some group theoretic decision problems are adapted from
Arvind & Vinodchandran [AV97].

Definition 2.8 ([AV97]). Let B = {Bn}n≥1 be a group family. Let e denote the identity
element of each Bn. Below, g and h denote elements, and S1 and S2 subgroups, of Bn.

Group Intersection := {(0n, S1, S2) | S1 ∩ S2 = {e}},
Multiple Group Intersection := {(0n, S1, . . . , Sk) | S1 ∩ . . . ∩ Sk = {e}},

Group Membership := {(0n, S1, g) | g ∈ S1},
Group Factorization := {(0n, S1, S2, g) | g ∈ S1S2},

Coset Intersection := {(0n, S1, S2, g) | S1g ∩ S2 6= ∅},
Double Coset Membership := {(0n, S1, S2, g, h) | g ∈ S1hS2}.

We also studied restrictions of some of these problems, such as Solvable Group In-

tersection, where the input subgroups are assumed to be solvable.
Figure 3 depicts some efficient quantum reducibility relationships among these and other

group-theoretic problems such as Orbit Coset and Orbit Superposition defined by
Friedl et al. [FIM+03]. In that paper, a quantum algorithm for Orbit Coset was decribed
that runs in polynomial time for smoothly solvable groups, i.e., families of input groups that
are solvable with abelian decomposition series of length O(1) such that each factor group is
the direct product of a group with exponent O(1) and a group of size (log n)O(1), where n is
the index parameterizing the ambient group.

Our reductions immediately imply efficient quantum algorithms for Solvable Group

Intersection if one of the underlying solvable groups has a smoothly solvable commutator
subgroup, and for Double Coset Membership if one of the underlying solvable groups
is smoothly solvable [FZ05]. Our work also introduces new decision versions of some search
problems, namely StabilizerD and Orbit CosetD, to help with the reducibilities. For
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=
Group

Membership

Group
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Figure 3: Quantum reducibility relationships between various group-theoretic problems.
Thick lines indicate nontrivial reductions we found in [FZ05]

example, whereas Stabilizer asks for (generators of) the stabilizer of a point with respect
to a group action, StabilizerD merely asks whether or not the stabilizer is trivial. It is
an interesting question to ask if these decision problems are strictly easier than their search
versions. This is an area of continued investigation.

We have also shown that Group Intersection and Double Coset Membership

have statistical zero-knowledge proofs [FZ05].

2.7 New Quantum Communication Protocols

We have investigated some problems in quantum communication, but currently have nothing
significant to report.

2.8 Quantum Random Walks

Although we did not propose work on this problem, we have a modest result in the area of
quantum random walks [FZ03]. We improve the analysis of an exponential lower bound on
the best expected time of a classical algorithm solving a random walk problem for which a
polynomial-time quantum algorithm has been found by Childs et al. [CCD+03].
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[BS84] L. Babai and E. Szemerédi. On the complexity of matrix group problems I. In
Proceedings of the 25th IEEE Symposium on Foundations of Computer Science,
pages 229–240, 1984.

[CCD+03] A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, and D. A. Spielman.
Exponential algorithmic speedup by a quantum walk. In Proceedings of the 35th
ACM Symposium on the Theory of Computing. ACM, 2003, quant-ph/0209131.

[Chu03] I. L. Chuang, 2003. Private communication.

[Chu04] I. L. Chuang, 2004. Private communication.

[Fen03a] S. A. Fenner. Distribution-valued functions and quantum computation. Prelim-
inary draft, 2003.

[Fen03b] S. A. Fenner. Implementing the fanout gate by a Hamiltonian, 2003, quant-
ph/0309163. Manuscript.

[Fen03c] S. A. Fenner. PP-lowness and a simple definition of AWPP. Theory of Computing
Systems, 36:199–212, 2003. Also available as ECCC Report TR02-036.

[FFG+06] M. Fang, S. Fenner, F. Green, S. Homer, and Y. Zhang. Quantum lower bounds
for fanout. Quantum Information and Computation, 6:46–57, 2006, quant-
ph/0312208.

[FFK94] S. Fenner, L. Fortnow, and S. Kurtz. Gap-definable counting classes. Journal of
Computer and System Sciences, 48(1):116–148, 1994.

[FFKL03] S. Fenner, L. Fortnow, S. Kurtz, and L. Li. An oracle builder’s toolkit. Infor-
mation and Computation, 182:95–136, 2003.

[FGHP99] S. Fenner, F. Green, S. Homer, and R. Pruim. Determining acceptance possibility
for a quantum computation is hard for the polynomial hierarchy. Proceedings of
the Royal Society London A, 455:3953–3966, 1999, quant-ph/9812056.

10



[FGHZ05] S. Fenner, F. Green, S. Homer, and Y. Zhang. Bounds on the power of constant-
depth quantum circuits. In Proceedings of the 15th International Symposium on
Fundamentals of Computation Theory, volume 3623 of Lecture Notes in Com-
puter Science, pages 44–55. Springer-Verlag, 2005, quant-ph/0312209.

[FIM+03] K. Friedl, G. Ivanyos, F. Magniez, M. Santha, and P. Sen. Hidden Transla-
tion and Orbit Coset in quantum computing. In Proceedings of the 35th ACM
Symposium on the Theory of Computing, pages 1–9, 2003, quant-ph/0211091.

[FR99] L. Fortnow and J. Rogers. Complexity limitations on quantum computation.
Journal of Computer and System Sciences, 59(2):240–252, 1999, cs.CC/9811023.

[FZ03] S. Fenner and Y. Zhang. A note on the classical lower bound for a quantum
walk algorithm. Manuscript, 2003, quant-ph/0312230.

[FZ04] S. Fenner and Y. Zhang. Implementing fanout, parity, and mod gates via spin
exchange interactions, 2004, quant-ph/0407125. Manuscript.

[FZ05] S. Fenner and Y. Zhang. Quantum algorithms for a set of group theoretic prob-
lems. In Proceedings of the 9th IC-EATCS Italian Conference on Theoretical
Computer Science, volume 3701 of Lecture Notes in Computer Science, pages
215–227. Springer-Verlag, 2005, quant-ph/0408150.

[GHMP02] F. Green, S. Homer, C. Moore, and C. Pollett. Counting, fanout and the com-
plexity of quantum ACC. Quantum Information and Computation, 2:35–65,
2002, quant-ph/0106017.
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